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1 D waves

∂2u
∂t2

=
∂2u
∂x2

, t, x 2 R

u(x , 0) = f (x),

ut (x , 0) = g(x)

general solution (d�Alembert)

u(x , t) = F (x + t) + G (x � t)

fF ,Gg equivalent to ff , gg
Suppose f , g ,F ,G are real.
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Energies

K (t) =
1
2

∞Z
�∞

ut (x , t)2dx

P(t) =
1
2

∞Z
�∞

ux (x , t)2dx

E (t) = K (t) + P(t)

Assume f , g 2 C 2c (R). Energy conservation:

dE/dt =
Z
R

(ututt + uxuxt )dx

=
Z
R

(ututt � utuxx )dx = 0.
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Equipartion of energy

F ,G have compact support since f , g do. By d�Alembert�s formula,

K (t) =
1
2

Z
R

(F 0(x + t)� G 0(x � t))2dx .

P(t) =
1
2

Z
R

(F 0(x + t) + G 0(x � t))2dx .

P(t)�K (t) = 2
Z
R

F 0(x + t)G 0(x � t)dx = 0

if jtj > R, since F 0(s) = G 0(s) = 0 for js j > R.
Thus

K (t) = P(t) =
E
2
= constant for jtj > R.

This is equipartition of energy.
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Equipartion of energy II

Moreover, for all �nite energy solutions,

lim
t!∞

K (t) = lim
t!∞

P(t) = E/2.

Jerry Goldstein (University of Memphis) Energy asymptotics 10/13 6 / 31



Spectral Theorem

Theorem
A = A� on H i¤ there is a unitary U : H ! L2(Ω,Σ, µ) such that

UAU�1 = Ma

a : Ω ! R, Σ�measurable
Mag = ag , D(Ma) = fu : u, au 2 L2g
σ(A) = essrange(a).

For any Borel function h : σ(A)! C,

h(A) = UMh(a)U
�1,

h(A) = h(A)� i¤ h is real,

e itA is unitary for all real t.

Jerry Goldstein (University of Memphis) Energy asymptotics 10/13 7 / 31



Spectral Theorem (continued)

Theorem

χΓ(A) is an orthogonal projection for each Borel set Γ,
E (λ) = χ(�∞,λ](A), λ 2 R, resolution of the identity

A =
Z
R

λdE (λ), h(A) =
Z
R

h(λ)dE (λ).

Get hL(A)f , gi from hL(A)h, hi ,

hL(A)h, hi =
Z
R

L(λ)d kE (λ)hk2 .

Jerry Goldstein (University of Memphis) Energy asymptotics 10/13 8 / 31



Spectral Theorem (continued)

Theorem

χΓ(A) is an orthogonal projection for each Borel set Γ,
E (λ) = χ(�∞,λ](A), λ 2 R, resolution of the identity

A =
Z
R

λdE (λ), h(A) =
Z
R

h(λ)dE (λ).

Get hL(A)f , gi from hL(A)h, hi ,

hL(A)h, hi =
Z
R

L(λ)d kE (λ)hk2 .

Jerry Goldstein (University of Memphis) Energy asymptotics 10/13 8 / 31



The "wave equation" is

u00 + A2u = 0

Energies: Dropping the factor 1/2,

K (t) =
u0(t)2 ,

P(t) = kAu(t)k2 =


A2u, u

�
,

E = K + P.

Use
d
dt
hw ,wi = 2Re



w 0,w

�
.
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Energy conservation

dE
dt

= 2Ref


u00, u0

�
+


Au,Au0

�
g

= 2Re


u00 + A2u, u0

�
= 0.

d�Alembert formula

u(t) = e itAF + e�itAG ,

fF ,Gg equivalent to ff , gg.

K (t) =
i(e itAAF � e�itAAG )2

P(t) =
e itAAF + e�itAAG2

K � P = �4Re
D
e itAAF , e�itAAG

E
= �4Re

D
e2itAH,K

E
.
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Equipartition of energy

Next,

E < ∞ i¤ F ,G 2 D(A)
i¤ f 2 D(A), g 2 H.

Hence for all �nite energy solutions, equipartition of energy holds

K � P ! 0 as t ! ∞
i¤
D
e itAh, h

E
! 0 as t ! ∞ for all h.
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Equipartition of energy II

But D
e itAh, h

E
=
Z
R

e itλd kE (λ)hk2 .

Let µh be the corresponding �nite Borel measure. The
Riemann-Lebesgue lemma implies equipartition of energy when µh is
a.c.

In fact, equipartition of energy is equivalent to e itA ! 0 in the WOT.

For ν a �nite Borel measure on R,uniquely,

ν = νac + νsc + νd .

νd is discrete i¤ it is atomic and its "distribution function" is pure
jump.
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Lebesgue-Kato decomposition

For A selfadjoint on H,

Hj (A) = fh 2 H : d kE (λ)hk2 is jg for j = ac , sc , d ,

H = Hac (A)�Hsc (A)�Hd (A),

Hd (A) = span (eigenvectors);

HRL(A) = fh :
D
e itAh, h

E
! 0 as t ! ∞g

Hac (A) � HRL(A) � Hc (A)
Equipartition of energy holds i¤ HRL(A) = H (JG, 1969)
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Telegraph equation

u00 + 2au0 + A2u = 0,

A = A� � bI , a > 0,

0 � b = inf σ(A)

Let K ,P,E be as before, and

dE
dt

= 2Ref


u00, u0

�
+


Au,Au0

�
g

= 2Re


u00 + A2u, u0

�
= 2Re



�2au0, u0

�
= �4aK .

E (t)! 0 as t ! ∞. Equipartition of energy???
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Theorem
(JG and Jim Sandefur, 1987) 0 < a < b, Hac (A) = H implies

K (t)
P(t)

! 1 as t ! ∞ for all nonzero �nite energy solutions.

Jerry Goldstein (University of Memphis) Energy asymptotics 10/13 15 / 31



Strong damping

New research started in 2009

u00 + 2Bu0 + A2u = 0,

A = A� � 0,B = B� � 0,
[A,B ] = 0, A injective

Special cases
B = aAα, a > 0, 0 � α < 1

α = 0, telegraph equation

α > 0, strongly damped wave equation.

Three topics:

Equipartition of Energy
Overdamping
Asymptotic Parabolicity

Jerry Goldstein (University of Memphis) Energy asymptotics 10/13 16 / 31
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Modi�ed energies

bK (t) = etBu0(t)2 ,

bP (t) = etBAu(t)2
Note that for B = aI (telegraph case)

bK (t)bP (t) = K (t)
P (t)

.
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Classical Overdamping

y 00 + 2ay 0 +ω2y = 0, a > 0, ω > 0

y(t) = C+eλ+t + C�eλ�t

λ2 + 2aλ+ω2 = 0

λ� = �a� (a2 �ω2)1/2

For such solutions y ,

jy(t)j � Ce�at if a < ω,

jy(t)j � Ce�(a�
p
a2�ω2)t if a > ω.

Here C = C (y(0), y 0(0)). We omit the double root case a = ω.
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Overdamping

For y real,

E = K + P,

=
��y 0(t)��2 + jωy(t)j2 ,

1
2
E 0 = y 0(y 00 +ω2y)

= y 0(�2ay 0) = �2aK

C = C0(E (0)).

Overdamping
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Overdamping II

GG-JG-Perla
u00 + 2au0 + A2u = 0,

A = A� � bI ,
b = inf σ(A)̇ > 0, a > 0.

Theorem
(GGP) Optimal estimate:

E (t) � Ce�γt

γ = a if a < b

γ = a�
p
a2 �ω2 if a > b.

Jerry Goldstein (University of Memphis) Energy asymptotics 10/13 20 / 31



Generalized equipartition of energy

Study the dependence of C on the data.

Work with Guillermo Reyes

Consider
u00 + 2Bu0 + A2u = 0

B = F (A),

[A,B ] = 0,

b = inf σ(A) > 0,

A2 � B2 � δ2I and is spectrally absolutely continuous.

Modi�ed energies.

bK (t) = etBu0(t)2 , bP(t) = etBAu(t)2
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Joint work with Reyes

We have

Theorem
(JG & GR) bK (t)bP(t) ! 1 as t ! ∞

for all nonzero �nite energy solutions.

Now we consider

Example
Let B = aAα, 0 � α < 1. This damped wave equation is a ψDE . To make
it a PDE , take

A2 = �D6+ ε2I , D = d/dx , H = L2(R), B = (A2� ε2I )2/3 = �D2

C = C0(E (0)) holds on some subspaces but fails in general.
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Overdamping theorem

Theorem
(GG, JG & GR) B = F (A), 0 < b = inf σ (A) , F is continuous on
(0,∞); F is bounded on (0,1), and there is a γ > 0 such that

F (x) > x on (0,γ)

F (x) < x on (γ,∞)
(1� ε)x � F (x) > 0 for large x .

Then
E (t) � Ce�α(γ)t holds with

α(γ) =

�
essinf f[b,∞)(F ) if γ < b

minfessinf f[b,γ)(C1), essinf f[γ,∞)(F )g if γ > b

C1 = B � [B2 � A2]1/2 = C1(A)

Jerry Goldstein (University of Memphis) Energy asymptotics 10/13 23 / 31



Theorem (continued)

Theorem
For B = aAα as before,

α(γ) =

(
abα if γ = a

1
1�α < b

abα � bα
p
a2 � b2�2α if γ = a

1
1�α > b

.

Asymptotic parabolicity. Long history:

G. I. Taylor (1922), S. Goldstein, Kac, Cattaneo,
Eckstein,JG, Leggas; Clarke, Eckstein, JG; Clarke,
GG, JG, Romanelli (telegraph);
Fragnelli, GG, JG, Romanelli (strong damping);
Raluca Clendenen (2013 PhD)
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For simplicity, restrict to

u00 + 2Bu0 + A2u = 0,

u(0) = f , u0(0) = g ,

B = aAα, 0 � α < 1.

The associated parabolic problem is

2Bv 0 + A2v = 0,

v(0) = h.
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Asymptotic Parabolicity

We assume
A = A�,

inf σ(A) = 0 /2 σp(A)

Let
B = aAα, 0 � α < 1

h =
1
2

χ[0,γ)(A)fg + [B2 � A2]1/2(g + Bf )g 6= 0.
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Asymptotic Parabolicity II

Theorem
(Fragnelli, GG, JG, Romanelli)

u(t) = v(t)f1+ o(t)g as t ! ∞ provided h 6= 0.

If
h = χ(0,γ�ε)(A)h for some ε > 0,

then the o(1) term is o(e�δt ) for some δ = δ(ε) > 0.
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Dynamic boundary conditions

Consider
ut = ∆u in Ω,

ut + β
∂u
∂n
+ γu � qβ∆LBu = 0 on ∂Ω

Di¤usion inside & di¤usion on the boundary

If ut = ∆u holds on
_
Ω�R+, we can replace ut by ∆u in the

boundary condition.

Jerry Goldstein (University of Memphis) Energy asymptotics 10/13 28 / 31



Wentzell boundary conditions

Example

Let Ω be an unbounded domain in RN containing arbitrarily large balls.
Consider the "Wentzell Laplacian"

A2 = �∆ in Ω,

∆u + β
∂u
∂n
+ γu � qβ∆LBu = 0 on ∂Ω

β, 1/β,γ 2 L∞(RN ),

β > 0,γ � 0, q 2 [0,∞).

Then a version of A, call it A, is selfadjoint on
H = L2(Ω, dx)� L2(∂Ω, dS/β) and satis�es

inf σ(A) = 0 /2 σp(A).

The nature of σ(A) is unknown.
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Linear unidirectional waves in 1 D

Consider, for x 2 R

ut = c1ux + c2uxxx
(c1, c2) 6= (0, 0),

The usual 1 D travelling waves correspond to c2 = 0;
the Airy (or linearized KdV) equation corresponds to c2 6= 0.
For example, if

D = d/dx on L2(R),

then
A2 = �D6 is injective,

A = A�,

inf σ(A) = 0 /2 σp(A)

A = jD j3 .

Jerry Goldstein (University of Memphis) Energy asymptotics 10/13 30 / 31



Linear unidirectional waves in 1 D

Consider, for x 2 R

ut = c1ux + c2uxxx
(c1, c2) 6= (0, 0),

The usual 1 D travelling waves correspond to c2 = 0;

the Airy (or linearized KdV) equation corresponds to c2 6= 0.
For example, if

D = d/dx on L2(R),

then
A2 = �D6 is injective,

A = A�,

inf σ(A) = 0 /2 σp(A)

A = jD j3 .

Jerry Goldstein (University of Memphis) Energy asymptotics 10/13 30 / 31



Linear unidirectional waves in 1 D

Consider, for x 2 R

ut = c1ux + c2uxxx
(c1, c2) 6= (0, 0),

The usual 1 D travelling waves correspond to c2 = 0;
the Airy (or linearized KdV) equation corresponds to c2 6= 0.

For example, if
D = d/dx on L2(R),

then
A2 = �D6 is injective,

A = A�,

inf σ(A) = 0 /2 σp(A)

A = jD j3 .

Jerry Goldstein (University of Memphis) Energy asymptotics 10/13 30 / 31



Linear unidirectional waves in 1 D

Consider, for x 2 R

ut = c1ux + c2uxxx
(c1, c2) 6= (0, 0),

The usual 1 D travelling waves correspond to c2 = 0;
the Airy (or linearized KdV) equation corresponds to c2 6= 0.
For example, if

D = d/dx on L2(R),

then
A2 = �D6 is injective,

A = A�,

inf σ(A) = 0 /2 σp(A)

A = jD j3 .

Jerry Goldstein (University of Memphis) Energy asymptotics 10/13 30 / 31



Linear unidirectional waves in 1 D

Consider, for x 2 R

ut = c1ux + c2uxxx
(c1, c2) 6= (0, 0),

The usual 1 D travelling waves correspond to c2 = 0;
the Airy (or linearized KdV) equation corresponds to c2 6= 0.
For example, if

D = d/dx on L2(R),

then
A2 = �D6 is injective,

A = A�,

inf σ(A) = 0 /2 σp(A)

A = jD j3 .

Jerry Goldstein (University of Memphis) Energy asymptotics 10/13 30 / 31



Linear unidirectional waves in 1 D

Consider, for x 2 R

ut = c1ux + c2uxxx
(c1, c2) 6= (0, 0),

The usual 1 D travelling waves correspond to c2 = 0;
the Airy (or linearized KdV) equation corresponds to c2 6= 0.
For example, if

D = d/dx on L2(R),

then
A2 = �D6 is injective,

A = A�,

inf σ(A) = 0 /2 σp(A)

A = jD j3 .

Jerry Goldstein (University of Memphis) Energy asymptotics 10/13 30 / 31



Linear unidirectional waves in 1 D

Consider, for x 2 R

ut = c1ux + c2uxxx
(c1, c2) 6= (0, 0),

The usual 1 D travelling waves correspond to c2 = 0;
the Airy (or linearized KdV) equation corresponds to c2 6= 0.
For example, if

D = d/dx on L2(R),

then
A2 = �D6 is injective,

A = A�,

inf σ(A) = 0 /2 σp(A)

A = jD j3 .

Jerry Goldstein (University of Memphis) Energy asymptotics 10/13 30 / 31



Linear unidirectional waves in 1 D

aAα is a ψDO unless α = 0 or α = 2/3.

In the latter case,

utt � 2autxx � uxxxxxx = 0,

2avt + vxxxx = 0.
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