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0%u 0%y
Fr T txeR
u(x,0) = f(x),

ur(x,0) = g(x)

@ general solution (d'Alembert)

u(x,t) =F(x+1t)+ G(x—1t)

{F,G} equivalentto {f, g}
@ Suppose f, g, F, G are real.
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K(t) = ;/ut(x, £)2dx
P(t) = ;/ux(x, t)%dx
E(t) = K(t)+ P(t)
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K(t) = ;/ut(x, £)2dx
P(t) = ;/UX(X, t)%dx
E(t) = K(t)+ P(t)

o Assume f,g € C2(R). Energy conservation:

dE/dt — /(ututt Uy ) dx

R
e /(ututt — UtUXX)dX = 0
R
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Equipartion of energy

@ F, G have compact support since f, g do. By d'Alembert’s formula,
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Equipartion of energy

@ F, G have compact support since f, g do. By d'Alembert’s formula,
o

K(t) — ;/(F'(H £) = G'(x — t))2dx.

P(t) — %/(F’(x+t)+G/(x—t))2dx.
R
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Equipartion of energy

@ F, G have compact support since f, g do. By d'Alembert’s formula,
o

K(t) — ;/(F’(H £) = G'(x — t))2dx.

P(t) — %/(F’(x+t)+G/(x—t))2dx.
R

P(t) — K(t) = 2/F'(x+t)c’(x—t)dx:o
R

if [t| > R, since F'(s) = G'(s) =0 for |s| > R.
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Equipartion of energy

@ F, G have compact support since f, g do. By d'Alembert’s formula,

K(t) — ;/(F’(H £) = G'(x — t))2dx.
R

P(t) — %/(F’(x+t) + G (x— 1))2dx.
R

P(t) — K(t) = 2/F’(x—|— £)G'(x — t)dx = 0

R

if [t| > R, since F'(s) = G'(s) =0 for |s| > R.

@ Thus

E
K(t) = P(t) = 7 = constant for |t| > R.
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Equipartion of energy

@ F, G have compact support since f, g do. By d'Alembert’s formula,

K(t) — ;/(F’(H £) = G'(x — t))2dx.
R

P(t) — %/(F’(x+t) + G (x— 1))2dx.
R

P(t) — K(t) = 2/F’(x—|— £)G'(x — t)dx = 0

R

if [t| > R, since F'(s) = G'(s) =0 for |s| > R.

@ Thus

E
K(t) = P(t) = 7 = constant for |t| > R.

@ This is equipartition of energy.

Jerry Goldstein (University of Memphis) Energy asymptotics



Equipartion of energy Il

@ Moreover, for all finite energy solutions,

lim K(t) = lim P(t) = E/2.

t—oo t—oo
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Spectral Theorem

A = A* on H iff there is a unitary U : H — L?>(Q, X, u) such that

UAUTY = M,
a : O — 1R, X~ measurable
M.g = ag, D(M,) ={u:uaucl?®}
0(A) = essrange(a).

For any Borel function h: o(A) — C,

h(A) = UMy, U™

h(A) = h(A)" iff his real,
oIt

is unitary for all real t.
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Spectral Theorem (continued)

xr(A) is an orthogonal projection for each Borel set T,
E(A) = X(wp(A), AETR, resolution of the identity

/ AE(A),  h(A) = / h(A)dE(A).
R R

>
I
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Spectral Theorem (continued)

xr(A) is an orthogonal projection for each Borel set T,
E(A) = X(wp(A), AETR, resolution of the identity

/ AE(A),  h(A) = / h(A)dE(A).
R R

A

o Get (L(A)f,g) from (L(A)h, h) ,

(LA, by = [LA)d | EQ)H.

R

Jerry Goldstein (University of Memphis) Energy asymptotics



@ The "wave equation" is

A L=0
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@ The "wave equation" is
/! 2 _
u'+Au=0

e Energies: Dropping the factor 1/2,

K(t) = [0,
P(t) = [Au(t)|? = (A%u,u),
K+ P.
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@ The "wave equation" is
/! 2 _
u'+Au=0

e Energies: Dropping the factor 1/2,

K(t) = [0,
P(t) = [Au(t)|? = (A%u,u),
K+ P.

e Use 4
p (w,w) = 2Re<w', W>
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Energy conservation

% = 2Re{(v" ")+ (Au, AJ)}

= 2Re<u” + A%u, u’> =0.
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Energy conservation

% = 2Re{(u", ")+ (Au,AJ)}
= 2Re<u"—l—A2u, u'>:0.
o d'Alembert formula
u(t) = e"F 4 e MG,
{F,G} equivalentto {f,g}.
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Energy conservation

dE

- = 2Re{(v", u") + (Au, AJ")}

= 2Re<u” + A%y, u’> =0.
o d'Alembert formula
u(t) — eitAF+ e_itAG,
{F,G} equivalentto {f,g}.

i(e™AF — e ™ AG) H2

P(t) = ”eitAAF+e’itAAG“2

Jerry Goldstein (University of Memphis) Energy asymptotics



Energy conservation

dE

- = 2Re{(v", u") + (Au, AJ")}

= 2Re<u” + A%y, u’> =0.
o d'Alembert formula
u(t) — eitAF+ e_itAG,
{F,G} equivalentto {f,g}.

. . 2
K(t) = [ie™AF - e ac)|

P(t) = "eitAAF+e’itAAG"2

K—P=—4Re <e"“‘AF, e—"fAAG> — _4Re <e2"fAH, K> .
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Equipartition of energy

@ Next,

E < oiff F,G e D(A)
iff f € D(A). g€ H.
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Equipartition of energy

@ Next,

E < oiff F,G e D(A)
iff f € D(A), g€ H.

@ Hence for all finite energy solutions, equipartition of energy holds

K—P — Qast— o
iff <eitAh, h> . Qast—s oo forall h.
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Equipartition of energy Il

o But

(", h) = /e'“d IE(A)A? .

R
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Equipartition of energy Il

o But
(", h) = /e'“d IE(A)A? .
R
@ Let y, be the corresponding finite Borel measure. The

Riemann-Lebesgue lemma implies equipartition of energy when p, is
a.c.
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Equipartition of energy Il

e But
(", h) = /e'“d IE(A)A? .
R

@ Let y, be the corresponding finite Borel measure. The
Riemann-Lebesgue lemma implies equipartition of energy when p, is
a.c.

o In fact, equipartition of energy is equivalent to et — 0 in the WOT.
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e But
(", h) = /e'“d IE(A)A? .
R

@ Let y, be the corresponding finite Borel measure. The
Riemann-Lebesgue lemma implies equipartition of energy when p, is
a.c.

o In fact, equipartition of energy is equivalent to et — 0 in the WOT.

e For v a finite Borel measure on IR,uniquely,

V= "Vac+Vsc +Vyq.
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Equipartition of energy Il

e But
(", h) = /e'“d IE(A)A? .
R

@ Let y, be the corresponding finite Borel measure. The
Riemann-Lebesgue lemma implies equipartition of energy when p, is
a.c.

o In fact, equipartition of energy is equivalent to et — 0 in the WOT.
e For v a finite Borel measure on IR,uniquely,

V= "Vac+Vsc +Vyq.

e v, is discrete iff it is atomic and its "distribution function" is pure
jump.
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Lebesgue-Kato decomposition

@ For A selfadjoint on H,
Hi(A)={heH:d IE(A)A||? is j} for j = ac, sc. d,

H = Hyc(A) ® Hse (A) ® Hq(A),
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Lebesgue-Kato decomposition

@ For A selfadjoint on H,
Hi(A)={heH:d IE(A)A||? is j} for j = ac, sc. d,

H= Hac(A) 5% Hsc(A) @ Hy (A),
Hy(A) = span (eigenvectors);

Hri (A) = {h: <e"fAh, h> —0ast— oo}
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Lebesgue-Kato decomposition

@ For A selfadjoint on H,
Hi(A)={heH:d IE(A)A||? is j} for j = ac, sc. d,

H = Hyc(A) ® Hse (A) ® Hq(A),

°
Hy(A) = span (eigenvectors);
° .
Hri (A) = {h: <e’tAh, h> —0ast— oo}
°

H.c(A) C Hgi(A) C H:(A)
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Lebesgue-Kato decomposition

@ For A selfadjoint on H,
Hi(A)={heH:d |E(A)A||? is j} for j = ac, sc, d,

H = Hyc(A) ® Hse (A) ® Hq(A),

°
Hy(A) = span (eigenvectors);
° .
Hri (A) = {h: <e’tAh, h> —0ast— oo}
°

Hac(A) C Hro(A) C Ho(A)
e Equipartition of energy holds iff Hg (A) = H  (JG, 1969)
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Telegraph equation

'+ 2au + A%y = 0,
A=A* > bl, a> o0,
0 < b=info(A)
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Telegraph equation

u”+23u/—|-A2u:O,
A=A*>bl, a>0,
0 < b=info(A)
@ Let K, P, E be as before, and

dE

e 2Re{<u”,u/>+<Au,Au/>}
= 2Re<u”—|—A2u,u'>

2Re <—23u/, u/> = —43K.
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Telegraph equation

u”+23u/—|-A2u:O,
A=A*>bl, a>0,
0 < b=info(A)
@ Let K, P, E be as before, and

dE

o = 2Re{(v", u") + (Au, Ad")}

= 2Re<u”—|—A2u,u'>
= 2Re<—23u/,u/> = —43K.

e E(t) — 0 as t — co. Equipartition of energy???
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(JG and Jim Sandefur, 1987) 0 < a < b, H,c(A) = H implies

K(t)

——= — 1 as t — oo for all nonzero finite energy solutions.

P(t)
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Strong damping

@ New research started in 2009
u" +2Bu + A*u =0,
A=A">0,B=B">0,
[A B] =0, A injective
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Strong damping

@ New research started in 2009
u" +2Bu + A*u =0,
A=A">0,B=B">0,
[A B] =0, A injective

@ Special cases
B=aA" a>0 0<a<l1

a =0, telegraph equation
« > 0, strongly damped wave equation.

@ Three topics:

o Equipartition of Energy
e Overdamping
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Strong damping

@ New research started in 2009
u" +2Bu + A*u =0,
A=A">0,B=B">0,
[A B] =0, A injective

@ Special cases
B=aA" a>0 0<a<l1

a =0, telegraph equation
« > 0, strongly damped wave equation.

@ Three topics:

o Equipartition of Energy
e Overdamping
e Asymptotic Parabolicity

Jerry Goldstein (University of Memphis) Energy asymptotics



Modified energies
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Modified energies
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Modified energies

P()=| etBAu(t)H2

@ Note that for B = al (telegraph case)

K(t) K(t)

P(r) P(1)
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Classical Overdamping

y" +2ay’ + w?y =0, a>0 w>0
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Classical Overdamping

y" +2ay’ + w?y =0, a>0 w>0

y(t) = CreMt+ C Mt

Jerry Goldstein (University of Memphis) Energy asymptotics



Classical Overdamping

o
y" +2ay’ + w?y =0, a>0 w>0
o
y(t) = CreMt+ C Mt
o

A2+ 2a0 +w? =0

A = —a+ (2% — w?)!/?
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Classical Overdamping

o
y" +2ay’ + w?y =0, a>0 w>0
o
y(t) = CreMt+ C Mt
o

A 4+2a0 +w? =0
A = —a+ (2% — w?)!/?
@ For such solutions v,

ly(t)] < Ce® ifa<w,
ly(t)] < Ce VIt jras .
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Classical Overdamping

o
y" +2ay’ + w?y =0, a>0 w>0
o
y(t) = CreMt+ C Mt
o

A2 420 +w? =0
A = —a+ (2% — w?)!/?

@ For such solutions v,

ly(t)] < Ce® ifa<w,
ly(t)] < Ce VIt jras .

e Here C = C(y(0),y’(0)). We omit the double root case a = w.
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Overdamping

@ For y real,
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Overdamping

@ For y real,

E=K+P,
2 2
=Y (O +lwy(®)",
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Overdamping

@ For y real,
°
E=K+ P,
2 2
=y ()" + wy(t)]7,
°
]‘ / / 1 2
SE = v +wy)

= y'(—2ay’) = —2aK
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Overdamping

@ For y real,

E=K+P,

Y/ (8] + |wy(t)

— y/(y//_"_w2y)
= y'(—2ay’) = —2aK

C = G(E(0)).

Jerry Goldstein (University of Memphis)
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Overdamping

@ For y real,
°
E=K+ P,
2 2
= |y'(t)|" + |wy ()],
°
]‘ / / 1 2
SE = v +wy)
= y'(—2ay’) = —2aK
°

C = G(E(0)).

@ Overdamping

Jerry Goldstein (University of Memphis) Energy asymptotics



Overdamping |l

o GG-JG-Perla
U+ 2ad + A%u =0,

A= A" > bl,

b=info(A) >0,a>0.

(GGP) Optimal estimate:

E(t) < Ce ™

y=aifa<b
y=a—Va®—w?ifa>b.
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Generalized equipartition of energy

@ Study the dependence of C on the data.
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Generalized equipartition of energy

@ Study the dependence of C on the data.
@ Work with Guillermo Reyes

o Consider
U+ 2BY + A%u =0

B = F(A),
[A, B] =0,
b=info(A) >0,

A? — B? > 6% and is spectrally absolutely continuous.
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Generalized equipartition of energy

@ Study the dependence of C on the data.
@ Work with Guillermo Reyes

o Consider
U+ 2BY + A%u =0

B = F(A),
[A, B] =0,
b =info(A) >0,
A? — B? > 6% and is spectrally absolutely continuous.

o Modified energies.
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Generalized equipartition of energy

Study the dependence of C on the data.

Work with Guillermo Reyes
Consider

v+ 2B + A%u=0
B = F(A),
[A, B] =0,
b =info(A) >0,

A? — B? > 6% and is spectrally absolutely continuous.

Modified energies.
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Joint work with Reyes

@ We have
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Joint work with Reyes

@ We have

(JG & GR)

@—dasteoo

P(t)

for all nonzero finite energy solutions.
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@ We have
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@ Now we consider
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Joint work with Reyes

@ We have

(JG & GR)

@—dasteoo

P(t)

for all nonzero finite energy solutions.

@ Now we consider

Let B = aA%* 0 < & < 1. This damped wave equation is a Y DE. To make
it a PDE, take

A2 =D+, D=d/dx, H=L*(R), B=(A>—-¢%)?3=-D?
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Joint work with Reyes

@ We have

(JG & GR)

@—dastﬁoo

P(t)

for all nonzero finite energy solutions.

@ Now we consider

Let B = aA%* 0 < & < 1. This damped wave equation is a Y DE. To make
it a PDE, take

A2 =D+, D=d/dx, H=L*(R), B=(A>—-¢%)?3=-D?

e C = Gy(E(0)) holds on some subspaces but fails in general.

Jerry Goldstein (University of Memphis) Energy asymptotics



Overdamping theorem

(GG, JG & GR) B = F(A), 0< b=info (A), F is continuous on
(0,00); F is bounded on (0,1), and there is a v > 0 such that

F(x) > xon (0,7)
F(x) < xon (y,00)
(1—e)x—F(x) > 0 for large x.
Then

E(t) < Ce *")t holds with

(1) = essinf fip, o) (F) if y<b
M= min{essinf f|, .\ (C1), essinf fi, ) (F)} if ¥ >b

G = B—[B?>— A?]Y2 = ¢, (A)

Jerry Goldstein (University of Memphis)
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Theorem (continued)

For B = aA* as before,

ab® if

x(y) = y¥=ata <b
ab* — b*v/a? — b2 2% jf o = ati > b

@ Asymptotic parabolicity. Long history:
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ab® if
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Theorem (continued)

For B = aA* as before,

ab® if

x(y) = y¥=ata <b
ab* — b*v/a? — b2 2% jf o = ati > b

@ Asymptotic parabolicity. Long history:

G. I. Taylor (1922), S. Goldstein, Kac, Cattaneo,
Eckstein,JG, Leggas; Clarke, Eckstein, JG; Clarke,
GG, JG, Romanelli (telegraph);

Fragnelli, GG, JG, Romanelli (strong damping);
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Theorem (continued)

For B = aA* as before,

lx(r)/) _ ab® if y=a <b
ab* — b*v/a? — b2 2% jf o = ati > b

@ Asymptotic parabolicity. Long history:

G. I. Taylor (1922), S. Goldstein, Kac, Cattaneo,
Eckstein,JG, Leggas; Clarke, Eckstein, JG; Clarke,
GG, JG, Romanelli (telegraph);

Fragnelli, GG, JG, Romanelli (strong damping);
Raluca Clendenen (2013 PhD)
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@ For simplicity, restrict to

'+ 2BY + A%y = 0,

Jerry Goldstein (University of Memphis) Energy asymptotics



@ For simplicity, restrict to

'+ 2BY + A%y = 0,

B=aA* 0<a<1.
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@ For simplicity, restrict to

'+ 2BY + A%y = 0,

B=aA* 0<a<1.

@ The associated parabolic problem is
2BV + A%v =0,

v(0) = h.
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Asymptotic Parabolicity

@ We assume
A= A%,

info(A) =0 ¢ 0,(A)
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Asymptotic Parabolicity

@ We assume
A= A%,

info(A) =0 ¢ 0,(A)

o Let
B = aA", 0<ax<1
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Asymptotic Parabolicity

@ We assume
A= A%,

info(A) =0 ¢ 0,(A)

o Let
B = aA", 0<ax<1

h=SXiom (AN + (B2~ A]/2(g + BF)} £ 0.
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Asymptotic Parabolicity Il

(Fragnelli, GG, JG, Romanelli)

u(t) =v(t){l1+o(t)} ast — oo provided h # 0.

o If
h = X(0,4—¢)(A)h for some e >0,
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Asymptotic Parabolicity Il

(Fragnelli, GG, JG, Romanelli)

u(t) =v(t){l1+o(t)} ast — oo provided h # 0.

o If
h = X(0,4—¢)(A)h for some e >0,

o then the o(1) term is o(e~%t) for some § = &(e) > 0.

Jerry Goldstein (University of Memphis) Energy asymptotics



Dynamic boundary conditions

o Consider
ur = Au in Q,
Ju
Uy +ﬁ% +yu—qBAgu =0 on 90}

o Diffusion inside & diffusion on the boundary

o If uy = Au holds on Q x R*, we can replace u; by Au in the
boundary condition.
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Wentzell boundary conditions

Let O be an unbounded domain in RN containing arbitrarily large balls.
Consider the "Wentzell Laplacian"

A2 = —Ain Q,

Au—i—ﬁ%—i—’yu—qﬁALBu: 0 on 0Q)

B, 1/, v € L°(R"),
B>0,7v>0, g€ l000).

Jerry Goldstein (University of Memphis) Energy asymptotics



Wentzell boundary conditions

Let O be an unbounded domain in RN containing arbitrarily large balls.
Consider the "Wentzell Laplacian"

A2 = —Ain Q,

Au—i—ﬁ%—i—’yu—qﬁALBu: 0 on 0Q)
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Wentzell boundary conditions

Let O be an unbounded domain in RN containing arbitrarily large balls.
Consider the "Wentzell Laplacian"

A2 = —Ain Q,

Au—i—ﬁ%—i—’yu—qﬁALBu: 0 on 0Q)

B, 1/, v € L°(R"),
B>0,7v>0, g€ l000).

@ Then a version of A, call it A, is selfadjoint on
H = L2(Q), dx) @& L?(9Q), dS/B) and satisfies

info(A) =0 ¢ o,(A).

@ The nature of o(A) is unknown.
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Linear unidirectional waves in 1 D

o Consider, for x € R
Ur = CrUx + Colxxx

(c1, @) # (0,0),
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Linear unidirectional waves in 1 D

o Consider, for x € R
Ur = CrUx + Colxxx
(c1, @) # (0,0),

The usual 1 D travelling waves correspond to ¢; = 0;
the Airy (or linearized KdV) equation corresponds to ¢, # 0.

o For example, if

D = d/dx on L?(R),
@ then

A2 = — DO is injective,
o

A= A%,

info(A) =0 ¢ o,(A)

o

A=|D?.

Jerry Goldstein (University of Memphis) Energy asymptotics



Linear unidirectional waves in 1 D

@ aA%is a DO unless « = 0 or &« = 2/3.
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@ aA%is a DO unless « = 0 or &« = 2/3.

@ In the latter case,

Upr — 2aUp — Uxoox = 0,
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Linear unidirectional waves in 1 D

@ aA%is a DO unless « = 0 or &« = 2/3.

@ In the latter case,

Upr — 2aUp — Uxoox = 0,

2th + Viooxx = 0.

Jerry Goldstein (University of Memphis) Energy asymptotics
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